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This report discusses different approaches to stable H> controller design applied to the
problem of augmenting the longitudinal dynamics of an aircraft. Stability of the H*° controller
is investigated by analyzing the effects of changes in the performance index weights, and
modifications in the measured outputs. The existence of a stable suboptimal controller is
also investigated. It is shown that this is equivalent to finding a stable controller, whose
infinity norm is less than a specified bound, for an unstable plant which is determined from
parametrization of all H* controllers. Examples are given for a gust alleviation and a command
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1 Introduction

The problem of finding a stable feedback controller is known as strong stabilization, and it has
been widely studied in the literature, see e.g. [1]. One of the motivations behind this problem is
that, when the plant is stable, unstable controllers are not tolerant to faults in measurements.
An example of this is when a feedback path is broken, such a controller may lead to an
unbounded response for a bounded reference input. Also, from a real-time implementation

point of view, it may be undesirable to have an unstable feedback controller, (2], (3].

A necessary and sufficient condition for the existence of a strongly stabilizing controller
is the parity interlacing property (p.i.p.) [4]. A plant satisfies p.i.p. if the number of poles
between any pairs of distinct blocking zeros on the positive real axis (including +00) is even.
There are procedures for constructing stable controllers which stabilize a given plant, [5, 1, 4].
However, there is no simple parametrization for the set of all strongly stabilizing controllers.
Usually, closed loop stability is the first design requirement. But one is also interested in
achieving some kind of robustness and performance level in the controller design. This require-
ment can be achieved (with a certain degree of conservatism) by using H> control techniques.
Therefore, finding strongly stabilizing H* controllers is an important research problem, which
is the subject of this report. It should also be mentioned that some promising results appear
in [6] (see also references therein) on the ‘H? version of this problem. The effects of weight
selection on the stability of the optimal H™ controller for SISO plants have also been studied

in [7].



The plant considered in this study is a linear model of the longitudinal dynamics of an
experimental F-15 aircraft with pitch vectoring nozzles. For this plant, two H* control de-
sign problems are defined. The first one deals with gust alleviation, and the second one is
a command tracking problem. The results of [8], [9] and [10] are used in order to obtain a
parametrization of all suboptimal H™ controllers. The underlying operator theoretical results
for this parametrization can be found in [11, 12], see also [13] for more details. Most com-
mercially available softwares (e.g. robust control modules of MATLAB and MATRIXx)
generate the so-called “central controller” of [9], (see Section 2.2 for the precise definition of
the central controller) . Here, the effect of structural changes in the plant (e.g. adding one
more output for feedback) on the stability of the central controller is studied first. Then, the
effects of scaling the performance index weighting functions, and the effect of increasing (or
decreasing) the H* suboptimal peformance level v, on the stability of the central controller
are studied. Finally, the parametrization of all suboptimal H* controllers is studied, and
several different methods of finding a stable controller in this parametrization are discussed.
This is a significant problem, because for a given admissible v the central controller may be
unstable, but there may be a stable controller in the set of all controllers which achieves the

same performance level.

The rest of this paper is organized as follows. In the next section a background on the
standard M control problem is given, along with the formulae for the central controller and
the parametrization of all suboptimal controllers. The plant model considered in this paper is

also described in the next section. Section 3 is devoted to the studies on the stability of the



central controller. In Section 4, stable suboptimal H* controllers are investigated for the gust
alleviation and tracking examples. For both of these examples it is shown that there exists
a stable suboptimal controller, while the central controller is unstable. Finally, concluding

remarks are made in Section 5.

2 Background on H* control

2.1 Standard problem set-up

The so-called “standard H* control problem” deals with the system shown in Figure 1. The

system equations are assumed to be given by the following

i#(t) = Az(t)+ Biw(t)+ Bau(t) (1)
Z(t) = C]i(t) + D]]’w(t) + Dlgu(t) (2)
y(t) = sz(t) + Dzl‘lD(t) + ngu(t) (3)

where z represents combined states of the system, and components of w are the exogenous
signals (reference inputs, disturbances, measurement noises), components of u are the control
inputs, components of y are the measured signals, and components of z are internal signals to
be controlled. The optimal H* problem is to find a feedback controller K (whose input is y and
output u) so that the closed loop system is stable, and the worst energy amplification from w to
z is minimized. This problem is equivalent to finding a stabilizing controller which minimizes

| Tzwlloo, Where Ty (s) is the closed loop transfer function from w to z. The suboptimal



H* control problem is to find a stabilizing controller so that ||T;ullec < 7, for a specified

performance level v.

Usually, an H* control problem is first transformed to the above standard form. Then,
the controller is obtained from the matrices A, By, B;, C1, C2, D11, D12, D21, D23, using

algebraic Riccati equation solvers. The controller formulae are given in Section 2.2.

2.1.1 Aircraft Model

In order to demonstrate how one sets up an H*™ control problem, two examples will be con-
sidered. Both of these examples involve a nominal plant, which is a linear model for the

longitudinal dynamics of an aircraft. The plant is decribed by
tp(t) = Apzp(l) + Bpuy(t)
w(t) = Cpzp(t)

where z, are the states, u, denotes the command input and y, denotes the plant output, and

[—-0.2201 -33.6053 0.0000 —25.96417 [ —0.24037
-0.0014 -0.2070 1.0000 0.0630 -0.0016
Ap = B, =
—-0.0015 0.4846 -0.2448 0.0000 -0.0634
| 0.0000 0.0000 1.0000 0.0000 | 0.0000 |
- c,
Cp= where C, =57.2958{0 1 0 0] , C, =57.2958(0 0 1 0].
LCop

The first component of y,(t) is the angle of attack a(t) (in degrees) and its second component

is the pitch angular rate g,(t) (in degrees/sec). The command input u, is the nozzle pitch
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vector angle (in degrees). The components of the states z,, of the airframe are forward velocity
(in ft/sec), angle of attack (in radians), pitch rate (in rads/sec), and pitch attitude @ (in
rads), respectively. In this system the command signal u, is the output of an actuator whose

dynamical behavior is decribed by
i.(t) = —25z4(t) + 25u(t)
up(t) = z4(1) ,

where u(t) denotes the command signal to be generated by the feedback controller.

The poles of the transfer function T, y,, from u, to yp,, are
[+0.634, —0.8647, —0.2206 & j0.1274],
and the zeros of the first component Ty, o and second component Ty, g, of T, y, are
[-39.6, —0.1382 + 70.1726] and [-0.436556, 0.000, +0.002912]

respectively. Note that this plant satisfies the parity interlacing property, but the transfer
function from u, to g, does not. In other words, there exists a strongly stabilizing controller
for this plant. But, if the first output e(t) is not used as a control feedback, then for the

resulting plant all stabilizing controllers are unstable.

2.1.2 Tracking Problem Definition

Now the H* control problem, associated with tracking of a-command signal, can be defined in

terms of the system shown in Figure 2, where Ws(s) is the sensitivity weight, and Wr(s) is the
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weight for the complementary sensitivity. Usually W is chosen as a low pass filter, and Wt
is chosen as a high pass filter. This means that low frequency reference inputs are considered
for tracking, and high frequency unmodelled dynamics are taken into account for robustness,

see [5]. Accordingly following weights are chosen in this problem

Ws(s) = Cs(s — As)"'B, where A, =-1/335, B, =1000/335, C,=1,

Wr(s) = Ce(s — A" 1B, + D; where A, =-1/.00278, B; = —99.999/.00278, Ci=1,

and D, = 100, with R; = 1/3, R; = 1/3, R3 = 0.2, Ry = 0.02 K; = 3, K, = 0.001. The
scalars R1,..., R4 assign relative weights on the internal signals of interest and K, K2 scale
the measurement noises. For example if the size of u, has to be made small then R3 (weight
on u,) is chosen relatively large. In Figure 2, w; represents the reference input (we want o to

follow w;) and Kpw; represents a small amount of noise which is present in the measurement

n/K
of gop. If § := [ } and 4 := 25R4u, then the state equations, corresponding to the
y2/ K2
generalized system from [w ] to [z ], are in the form (1-3) with
[—25 0 0 07 [0 07 "1/R4 17
B, A, 0 O 0 0 0
A= B, = B, =
| 0 BC, 0 Al L 0 0. L 0




0 0 RiC, 0 7 [0 07 07
0 R,D.C, 0 RyC, 0 0 0
C= Dy, = Dy =
R3 0 0 0 0 0 0
| —25R4 0 0 0 J 0 0J [ 1]
0 ~Co/K: 0 O 10 0
C, = Dy = Dy, = .
0 Cp/K2 0 0 0 1 0

Note that the controller generates u = K (s)y. But first the controller which generates @ =

K, 077!
K(s)§, can be found and then from K (s) one can determine K(s) = (25R4)1K(s) l: ] .
0 K,
Numerically it is simpler to find K, because in this set-up D;2 and D2, are normalized to have

entries 1 and 0 only. See the formulae in [9} for a comparison.

2.1.3 Gust Alleviation Problem

Consider the plant described above with gust affecting the system dynamics as follows

wl(t)
Tpg(t) = ApgTpg(t) + By [ } + Bpgup(t)

‘U)z(t)
Yp(t) = CrgZpg(t)

01)(3 Ca } Cag

a
:l , in other words yp = l: ] , and
%

where Cpg = [
01 x3 Cpq

Ang, O 0
Apg = By, =
Ang Ap B,

C?PQ



SHENPO
0 V3
'V 0 0
0 1 1 00
0 2 1
Bg =0 ZLL/‘ 1 0 Allg = —% 0 2 1 A2lg - _%
0 00
0 V3/V 010
|0 0 O
0 0
|0 0

with V = 300ft/sec, L = 1670ft, and 0 < ¢ < 10, (a moderate gust, o = 5, will be considered).
The gust model in the above formulae is the Dryden model, which is described in [14]. The
command signal u, is generated by an actuator whose input is u, which is to be generated by a
feedback controller: u, = Wu, where Wu(s) = C,(s — A,)"'B,, with A, = —25, B, = 5 and
C, = 5. The H*® problem associated with this system is to minimize the effect of wy,..., w4
on zy,...24 as shown in Figure 3, where w3/K; and wys/K, represent measurement noises, z;
and 2, are scaled values of a and g, respectively, and z3 is the scaled control, and 24 is a blend
of the control and the control rate.

[ K11

For this problem define § := :|, then the system equations which represent the

[ K292
transfer function from [w, u] to [z, §] are in the form (1-3), with

A, 0 0 0 B,
B]‘:
0

BpgCa  Apg LB, 0

B, =




[ 0 R]Cag 7 —0-
G = Dy, =
[ o 0 | 1)
—0 R’lCag
Cy = Dgy = [02x2  I2x2]

and Dj; = 04xs, D22 = O2x1. Similar to the previous case, once a controller K , which generates
u from 7, is determined, the equivalent controller K, which generates the same control v from

K, 0
v, can be found by setting K(s) = K(s) [ ] .
0 K,

2.2 Controller Formulae

The formulae of [8, 9, 10] for H* controllers, which satisfy a certain specified performance level
~, is given below. The problem formulation, in both tracking and gust alleviation, satisfies the
structural assumptions of [9]. The controller expression is simpler if the formulation satisfies

the structural assumptions of {8]:

Assumptions

Al. (A, B;,C?) is stabilizable and detectable,

0]
I

A2. D;1=0,D =0,

By
A3. [ DI =

Dy




Ad4. DL [ D=0 I

The gust problem defined above satisfies these assumptions. For the tracking problem the
orthogonality assumptions A3 and A4 are not satisfied, therefore for this example a slightly

more complicated formula, [9], will be used.

Now consider the problem formulation given in (1-3), and assume that they satisfy A1,
..., A4, e.g. the gust alleviation problem is in this form. Then, set up the following Algebraic

Riccati Equations (AREs)
ATX + XA+ X(%BIBIT _BBN)X +CTC =0 (4)
AY +YAT + Y(;:;c;-’c1 _cIC,)Y + BiBF = 0. 5)

It has been shown that, [8, 9], there exists a stabilizing controller which makes ||Ty,,|lcc < 7 if
and only if there exist unique solutions X and Y, for (4) and (5), such that
(i) X and Y are positive semi-definite,
(ii) eigenvalues of Ax := A+ (%B1Bf — ByB])X and Ay := A+Y(HC{C1 - CJCy) are
in the open left half plane, and

(iii) the largest eigenvalue of XY is strictly less than 72 .

Moreover, if (i)—(iii) hold then all controllers, K, which stabilize the closed loop system and
achieve ||T,y|lcc < < are parametrized as follows
i(t) = Aczc(t)+ Bicg(t)+ Ba.q(1) (6)
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#(t) = Ciezc(t)+4q(t)

r(t) = Caczc(t)+9(t)

where
AC=M;Hﬂ%
By, = ZYCT,
By = ZB,,
C.. = -BIX,
Cae = —C;

(7)
(8)

(9)
(10)
(11)
(12)

(13)

and ¢(t) is generated by a transfer matrix Q(s), whose input is r(t), with @ € H* (that is

Q must be stable) and ||Q]leo < 7. Obviously, there are infinitely many choices for Q(s) and

hence there are infinitely many suboptimal controllers. Implementation of this controller is

shown in Figure 4. In particular, one can choose Q(s) = 0, this gives the “central” controller.

The issue of selecting Q will be discussed in Section 4. In [9] and [10] an alternative expression

for suboptimal controllers is given. This expression is in the same form as (6-8), but its state

space realization is slightly different

A, = Ay - BBIXZ,

By = YCT,
By, = By,
C.. = -BIXxz,

11

(14)
(15)
(16)

(17)



Ce = -CiZ. (18)
The above realization (14-18) can be obtained via a state transformation on (9-13).

It should be mentioned that for the tracking problem, the parametrization of all suboptimal
controllers is exactly the same as (6-8), but the AREs associated with this problem, and hence
computations of A, By, B2c, C1c and Cy, are slightly more complicated, see [9] for all the

details.

Note that the central controller is stable if and only if A, is a stable matrix (i.e. all the
eigenvalues of A. have strictly negative real parts). Whereas, stability of a controller which is
obtained from a non-zero Q(s) depends on A., By, C2. and ((s), to be discussed further in

Section 4.

3 Stability of the central controller

In this section the effects of structural changes and weight scalings, on the stability of the

central controller, will be discussed.

3.1 Changes in the output variables

Consider the tracking problem defined in Section 2.1.2. The central controller corresponding
to ¥ = 2 is unstable (for this system the optimal value of v is between 1.5 and 2). It will be

shown that by changing one of the output variables it is possible to transform the problem to
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a form where it is easy to analyze stability of the central controller. For this purpose replace
the second output y, = g, + Kowy with yo = u, — o where u, = Caz, + Kow;. Here Kow,
represents a small amount of actuator noise, whereas in the previous case it was a measurement
noise. Also for simplicity redefine z4 from R4u to z4 = u. Then, the generalized plant is as

shown in Figure 5.

As before, if §; := y;/K;, for i = 1,2, then the system equations are as in (1-3) where

[ A, 0 0 07 F 0 0 7 [ B, ]
B,Ca A, 0 0 0 B,k 0
A= B, = B; =
0 -B,Cy A, O B,K, 0 0
L 0 BtCa 0 At- L 0 O E L 0 .

0 DC., 0 Ci 0 —Cu/K: 0 0
C1= 02=
c. 0 0 0 Co/Ks ~CaofKs 0 0

and Dya=[0 0 0 1}JT, Dy = I, D13 =0, Dyy = 0. It is easy to check that if below assump-
tions (dff1-dff3) are satisfied then the problem formulation is in the form of the disturbance
feedforward (dff) problem defined in [8],
dffl. C,B, is invertible, D; # 0, K2 # 0,

dff2. (A,, B,,C,) is stabilizable and detectable,

dff3. A., A,, A; and (A, + B,C,) are stable.
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In this case the A-matrix of the central controller is

A.:= A- B\C; - B,BY X.

For the plant shown in Figure 5, the above dff assumptions are satisfied. Indeed one can check
that for A,, B, and C, given above the eigenvalues of (A, + B,C,) are at —0.1221 + 50.1757

and —0.2597 £ j1.7419. It is also easy to verify that in this case A is in the form

A, — B.BT X1y R R R

0 A,+B,Ca 0 O

A= 0 0 A, 0
i 0 B:Cq 0 Al

where X;; is the 1,1 entry of X, and R represents an entry whose value is not important. By
partitioning this matrix one can easily see that the eigenvalues of A, are the eigenvalues of its
diagonal blocks. Since A, + B,Cy, As, Ai, A, are stable and B,BT X, is a positive scalar,

one concludes that the central controller in this case is stable.

The purpose of this example was to show that by modifying one of the outputs it was
possible to obtain a central controller whose A-matrix A. has a certain special structure for
which the stability analysis is easy. Of course for more complicated examples it may be difficult
to see which way the output should be modified to get a stable controller. Moreover, in some

cases it may be impossible to modify the output physically.
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3.2 Scaling the weights and adjusting «

Now the effects of weight scalings on the stability of the central controller will be studied for
the gust alleviation example shown in Figure 3. Note that in this example one can think of Kj,
K2, Ry, R2, R3, R4 and o as scaling parameters. As illustrated by Figures 6 and 9 through 11,
changes in K3, R, R2 and R3 do not significantly affect the stability of the central controller.
These figures are generated with the nominal values Kiy=Ri=Ry;=R3=1, K, =0.01 and
o = 5. It is seen from Figures 7 and 8 that with these nominal values, if K is larger than 0.1,
the central controller is unstable, for both 7 = 25 and 7y = 30. In the above analyses, large
enough 4 values are chosen in order to guarantee the existence of an H* controller for the

parameter variations considered in each plot shown in Figures 6 through 11.

Now fix K; = K = Ry = R, = R3 = 1 and 0 = 5. For these values of the scaling

parameters

18< 7opt < 19 )

and the eigenvalues of the central controller for two different values of 4 are given below.
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7y=19 7v=25

~0.16 £ j0.06 | —0.17 £ j0.053

-0.18 £ j0.0057 | —0.18 + j0.00567

+ 0.6 + 0.3
-10.5 -5.5

-16.8 -17.1
-34.3 -34.9

This example shows that by increasing the value of v it is possible to move the unstable pole
slightly towards the left half plane. But the central controller remained unstable even for v as
large as 80. In fact, it is known that [8}, as ¥ — oo the central H* controller converges to the

optimal H? controller, which does not have to be stable.

In the tracking problem, the general rule of thumb is that if one is willing to give up the
performance to gain more robustness, then one should scale the sensitivity weight Ws by 1/k
and complementary sensitivity weight by £ > 1. Then, for k sufficiently large the central
controller is expected to be stable, see [7] for a delay system example. To illustrate this point,
now consider the generalized plant of Figure 12, which is a slightly different version of the
tracking problem defined in Section 2.1.2, (there are two more outputs for feedback, a and 6,
with slight additive noise). For this problem when k = 1 the optimal value of 7 is between 1.5
and 1.75, and for 7 = 1.75 the central controller is unstable. By increasing Wz and decreasing

Ws by a factor of k& > 2 one gets a stable central controller for vy = 2, as illustrated by
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Figure 13. However, this decreases overall performance, and increases response to noise.

4 Existence of a stable suboptimal controller

The previous section was devoted to studies on the stability of the central controller for a given
performance level 7. Sometimes the central controller may be unstable, but there may exist
another controller which is stable, and achieves the same performance level 7. In Sections 4.1
and 4.2 this situation will be illustrated with the gust alleviation and tracking examples. But

first some possible ways to find such a controller are described.

Recall that, for a given 7 > ,pt, all suboptimal controllers are parametrized by (6-8) where
g = Q(s)r, with @ € H*® and ||Qllc < 7. That is Q is the free parameter, but it has to be

stable, and its norm has to be bounded by . Suppose that Q has a state space realization
to(t) = Agzo(t)+ Byr(t)
g(t) = Cazy(t)+ Dgr(1) -

Then, inserting g(t) into (6) and (7), and using r(t) given by (8), one gets the following

realization for the controller (which is a transfer function from gy to i)

j:c(t) Ac + B2c-DqCZC BZCCq xc(t) Blc + BZch
o) 7| S
z4(t) B,Cc Aq z4(1) B,

a(t)

z.(t)

zq(1)

[ Cic + DqCQC Cq ] [ :| + Dq'j](t) . (20)
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Note that the A-matrix of this controller is
Ac+ By D,Cac B2.Cy
Ag = . (21)
B,Cs. A,

Hence, there exists a stable suboptimal H> controller for a given performance level 7 if and only
if there exists a “subcontroller” Q(s), stabilizing the “subplant” G.(s) := Bae(sI — A)"1Cs,
such that @ € H* and [|Q|lo < 7- Thus, testing whether there exists a stable suboptimal
H* controller amounts to checking if G. is strongly stabilizable by a controller whose norm is
bounded by 7. In other words, it is necessary (but not sufficient) that G, satisfy the parity
interlacing property. I G. satisfies p.i.p., then the next question is: can we find a norm

bounded stabilizing controller? To the authors’ knowledge there have not been any published

results on this problem.

One possible way to approach this problem is to apply any stable controller design procedure
(see e.g. [1, 5, 4]) to G.(s), and check whether this controller’s oo-norm is bounded by 7.
Obviously, there is no guarantee that this method Will work. A rigorous approach would be
to study different stable controller design algorithms, and try to determine if it is possible to

modify them so that the co-norm of the resulting controller is bounded by 7.

Another approach, which is more direct, would be to study the structure of all controllers
stabilizing G, and determine ways to choose the free parameter so that the controller is stable

and norm bounded. To illustrate this method assume that G, is SISO, then all stabilizing
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controllers are in the form {1]

_ X+ DsQq _ _Do(Xc+ DgQq)
Yo - NgQo ~ 1- No(Xc+ DcQq)

Q

where G, = Ng/Dg and Ng, Dg, X¢,Ye € H™ satisfy the Bezout equation

NgXc+YsDc =1,

and Qg € H™ is the free parameter. So, in order to have Q € H* and ||Q||cc < 7, one should
try to make || Xg + DgQq|lw as small as possible. However, by the Bezout equation X¢ is
equal to 1/Ng, at the zeros of Dg in the right half plane. So there is a limit how small this
expression can be made. Because of time limitations the authors did not further investigate
this method of trying to select an appropriate Qg € H*. It may or may not give satisfactory

results.

Note that, when the realization (19-20) is minimal, a dynamic Q(s) (i-e. Q(s) is non-
constant) leads to a controller whose order is larger than the order of the generalized plant.
This may be an undesirable situation. Therefore, one may want to restrict the search to non-
dynamic Q’s, in other words Q(s) = D, which is a constant. In this case, Q is automatically
in H*, so the only restriction is on the norm, that is Omaez(Dq) < 7. Moreover, if the number
of inputs § and outputs #, of G, is small then a parameter search, in the space of the entries
of D,, can be done to find a feasible D;. In the next section this approach will be illustrated

on gust alleviation and tracking examples defined earlier.
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4.1 Example: gust alleviation problem

Consider the H* control problem defined in Section 2.1.3, with the parameters By = R; =
R3 = K; = K, = 1 and o = 5. For this problem 18 < v,,: < 19; and for ¥ = 25 the central
controller is unstable, with a right half plane pole near +0.3. Now suppose v = 25 fixed. Then,

the problem is to determine if there exists Dy = [Dg1 Dgp] with
D% + D%, < 25° (22)

such that the eigenvalues of Ax = A.+ By DyCjy are in the open left half plane. The region in
the D,-plane which gives an affirmative answer to this question is the shaded area in Figure 14,

which falls in the circle (22). Note that allowable D,’s are in the form
D, = R [cos# sind)

where 0 < R < 25 and —7 < 6 < 7. The plot of max ReA(Ak), as R varies between 20 and
25, are as shown in Figure 15, for two cases of fixed § = —10° and # = —26°. Also, the plot of
max ReA(Ag), as 8 varies between —40° and —28°, are given in Figure 16, for fixed R at 23.5

and 24.9.

Figures 15 and 16 show that @ should be small and R should be large in order to make Ax
stable. Besides the stability of Ak, it is necessary to check the overall system performance in
the frequency domain, as well as in the time domain, in order to determine the optimal value
of D,. To illustrate the overall system performance allow to be set equal to Dy = [24.75 0.00].

As expected the closed loop performance is within specified level v, i.e. Omaz(Tzw(jw)) is below
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4 = 25, see Figure 17. For this system, the effects of a pulse gust (i.e. w(t) = wa(t) are equal

to a unit pulse of duration 0.25sec) on z,...,24 are shown in Figure 18.

4.2 Example: tracking problem

For the tracking problem defined in Section 2.1.2, recall that 1.5 < Yopt < 2, and for ¥ = 2
the central controller generated by the algorithm given in [9] is unstable. Now consider the
problem of determining if there exists Dy, =[Dg D,,) such that Ax = Ac+ B3 DyCyc has all

its eigenvalues in the open left half plane, and
D% + D2, < 2% (23)

The shaded region in Figure 19 which falls in the circle (23) indicates possible values of allowable
D, which make Ag stable. Note that compared to previous example, we don’t have much
freedom in choosing Dy, it has to be chosen close to Dg = [~1.99 0.00] in order to get a stable
Ak.

In the remainder of this section the performances of the suboptimal H* controller obatined
by choosing Q(s) = Dy = [-1.99 0.00], and the unstable central controller, i.e. the one with
D, = [0 0], will be compared. Frequency domain closed loop performances are compared in

Figure 20. As expected both controllers yield ||Tzulleo < 2.
It should also be mentioned that the observation noise Kaws is added to our original H*

control problem definition in order to satisfy rank conditions required in the solution procedure

given in [9]. Also, the weights are added to the standard H™ control problem in order to obtain
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a controller, which gives desired loop shapes; i.e. the weights are not physically present in the
system. So, once a controller is obtained it can be implemented on the physical plant as shown
in Figure 21. In this figure a.(t) represents the reference (command) input to the controller,
which generates u. The signal u is an input to the actuator, whose output u, is the plant

input. As before, plant outputs are o and gp.

Time domain performances of the controllers obtained for y = 2, with Dy, = [-1.99 0.00]
and with D, = [0 0], are shown in Figure 22. It is seen that the response a(t) is better
for D, = [0 0] (i.e. better tracking of a negative unit step ac(t)), and the command signals
up(t) are similar for both cases. Frequency domain performance plots are shown in Figures 23
and 24, where individual Bode plots (from a, to up(t) and a(t) respectively) are shown. As
expected the main difference in the frequency domain characteristics are in the high frequency
behavior. Note that when Dy # 0 the controller is not strictly proper, so compared to Dy = 0

there is less high frequency roll-off.

5 Conclusions

In this research possible ways of obtaining stable controllers, achieving a certain pre-specified
H>™ performance level v, are identified. First the central controller A. is made stable by
scaling the weights and/or modifying the measured outputs. Secondly, existence of a stable
suboptimal controller is investigated by adjusting the free parameter Q(s) which appears in

the characterization of all suboptimal controllers. In the first method, since the structure of
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the H> problem is modified, the performance of the stable controller may be different than
the original unstable controller. In the second method, it is expected that if 4 is “close” to
its optimal value, then all suboptimal controllers are expected to be “close” to the central
controller, see e.g. [15]. Therefore, if the central controller is unstable and if 7 is close t0 Yopt,
there may not exist a stable suboptimal controller. So, for the second approach to work v has

to be “sufficiently larger” than vep:.

The second approach leads to an interesting problem: given an unstable plant G.(s), find
a strongly stabilizing controller Q(s) such that [|Q]le < 7- This problem is difficult to solve
in complete generality. Therefore the authors have concentrated their efforts in demonstarting
the existence of a constant norm bounded Q(s) = D, which stabilize G.(s), for both gust
alleviation and tracking problems. The approach here was simple brute-force. Since in this case
the number of inputs and outputs, for the controller, was 2 and 1 respectively, the parameter
space was two dimensional; and it was easy to check sufficiently large number of points to get

an idea about the region in the Dg-space that gives a solution.

Recall that the controller A-matrix, when D, is used, is given by Ax = A+ B2 DyCae,

and from (9-13) A. = Ax — ZYC;Cz, By, = ZB;, and Cy. = —C;. Therefore,

Ag = Ax — Z(YCT 4 B2Dy)Ca, (24)

where Ay is stable. This structure might give an idea about how D, should be chosen for
more complicated input/output definitions. For example, one may try to minimize the norm

of Z(YC; + B,D,)C;. This is a relatively easy optimization problem, which can be solved
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using existing commercially available software. However, there is no guarantee that after

minimization all the eigenvalues of Ax will be in the open left half plane.

The effects of weight scalings and modifications in the measured outputs, on stability of
the central controller, are studied in the first part of this research. Recall that A, is in the form
(9) or (14). More specifically A, = Ax — ZYCTC; or A, = Ay — B;B} X Z where Ay and
Ax are stable matrices. If the measured outputs are modified, then C5 changes, and without
changing Ay it changes the term ZY CJ C,. Therefore, one might be able to design C; so that
ZYCTC, is “small” compared to the eigenvalues of Ax, and by using Gershgorin’s theorem
[16] it may be possible to guarantee a stable A.. Similarly, if control inputs can be redefined,
i.e. By can be modified, then one can try to make BzB{ X Z “small” without changing Ay,
and this may lead to a stable controller. It is obvious from (24) that simultaneously modifying
C; and selecting D, which minimizes Z(Y CJ + B, D,)C; increases chances of getting a stable

controller whose poles are close to the eigenvalues of Ax.
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